

Modeling Highly Interpretable Fuzzy Systems

José M. Alonso jose.alonso@softcomputing.es

June 2010, Bari, Italy J

José M. Alonso (ECSC)

Modeling Higly Interpretable Fuzzy Systems

★ Ξ → < Ξ</p>

Index

- 2 Interpretability
- 3 HILK Methodology
- Experimental Analysis
- 5 Conclusions and Future Works

Introduction Motivation

Comprehensible Intelligent Systems are on demand

- Humanistic systems: Those systems whose behavior is strongly influenced by human judgment, perception or emotions (Zadeh, 1975)
- Decision support systems: Medicine, Economics, Robotics, etc.

Fuzzy Systems (Zadeh 1965, Mamdani 1974)

- Universal Approximators (Accuracy)
 - \Rightarrow System identification
- Semantic expressivity (Interpretability)
 - \Rightarrow Knowledge extraction and representation

Introduction Accuracy vs. Interpretability

Accuracy

• How similar are the outputs of the model and the real system ?

Interpretability

- Comprehensibility, intelligibility, transparency, understandability, readability, etc.
- Is the model (description and behavior) understandable (to a human) ?
 - Description ⇒ System structure readability (transparency)
 - Explanation
 ⇒ System comprehensibility (understandability)

Introduction Accuracy vs. Interpretability (History)

Interpretability - Accuracy (Fuzzy Logic)

- [1965] Fuzzy Logic (Zadeh)
- [1965 1990] Interpretability (I)
 - Simple linguistic rules with high interpretability
 - Expert knowledge
- [1990 2000] Accuracy (A)
 - Complicated fuzzy rules with high accuracy
 - Induced knowledge
- [2000 2010] I-A Trade-off
 - Simple linguistic rules with high accuracy
 - Expert + Induced knowledge ?
 - Characterizing and assessing Interpretability
 - Looking for useful Interpretability indices

Introduction Regarding Interpretability in terms of complexity

Interpretability-Accuracy Trade-off

- Contradictory goals: Looking for a good compromise (multi-objective optimization techniques)
- As the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance become almost mutually exclusive characteristics. The closer one looks at a real-world problem, the fuzzier becomes its solution (Principle of incompatibility, Zadeh 1973)

Introduction Regarding Interpretability in terms of complexity

Fuzzy Modeling (FM)

- Linguistic Fuzzy Modeling (LFM)
 - Maximizing Interpretability
 - Improving Accuracy
- Precise Fuzzy Modeling (PFM)
 - Maximizing Accuracy
 - Improving Interpretability
- Model Refining
 - Extending the modeling process

 (new algorithms for learning partitions and rules)
 - Extending the model structure (linguistics modifiers, weights, exceptions, etc.)

• How to characterize and evaluate Interpretability ?

Index

Introduction

- 2 Interpretability
- 3 HILK Methodology
- Experimental Analysis
- 5 Conclusions and Future Works

< 🗇 🕨

Intro Interp HILK Experiments Conclusions

Characterization Framework

Characterization of Interpretability

Definitions (I)

- Assuming T and S are formal theories, T is said to be interpretable in S ⇔ the language of T can be translated into the language of S in such a way that S proves the translation of every theorem of T (Tarski 1953)
- Interpretability means the possibility to estimate the system's behavior by reading and understanding its rule base (Bodenhofer and Bauer 2003)

Characterization of Interpretability

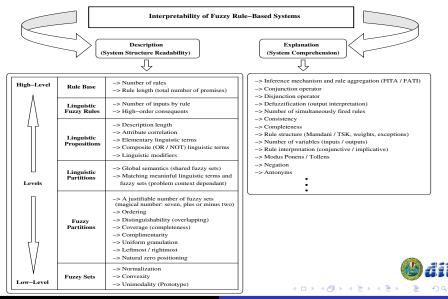
Definitions (II)

- Assessing Interpretability of a FS \equiv measuring the complexity of making the translation from L (model description based on FL) to L' (model explanation based on NL) (Mencar et al. 2005)
- Comprehensibility Postulate (Michalski 1983)
 - + Notion of Cointension (Zadeh 2005)
 - \Rightarrow Understandability of patterns (Mencar et al. 2007)
 - \Rightarrow Cointensive Interpretability (Mencar et al. 2009)

Interpretability must be a central point in system modeling

- PNL ⇒ Precisiated Natural Language
- **CWW** ⇒ Computing with Words
- HCC ⇒ Human Centric Computing

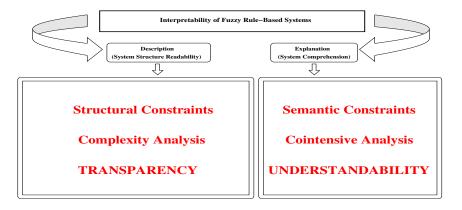
э


Conceptual Framework (I)

Two different points of view

- Description (system structure readability)
 - Number of variables, rules, linguistic terms, etc.
 - Regarding interpretability in terms of complexity:
 - \Rightarrow The more compact KB, the simpler its understanding
 - \Rightarrow Lower complexity means higher interpretability
- Explanation (system comprehension)
 - Inference level (fuzzy operators, rules fired at the same time, etc.)
 - Regarding interpretability in terms of complexity:
 - \Rightarrow The more compact KB, the more rules fired at the same time
 - \Rightarrow Lower complexity means lower interpretability
 - Contradictory goals
 - Cointensive Interpretability Logical View (Mencar et al. 2009)

Conceptual Framework (II)


June 2010, Bari, Italy

José M. Alonso (ECSC)

Intro Interp HILK Experiments Conclusions

Characterization Framework

Conceptual Framework (II)

June 2010, Bari, Italy

José M. Alonso (ECSC)

 < □ > < □ > < □ > < ≡ > < ≡ > ≡

 Modeling Higly Interpretable Fuzzy Systems

Index

1 Introduction

- Interpretability
- 3 HILK Methodology
 - 4 Experimental Analysis
 - 5 Conclusions and Future Works

Starting point (I)

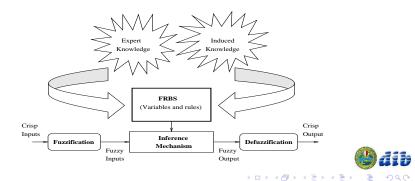
Proposal

- HILK: Highly Interpretable Linguistic Knowledge [IJIS 2008]
- Looking for a good interpretability-accuracy trade-off when modeling fuzzy rule-based classifiers (FRBCs)
 - KBCT

Knowledge Base Configuration Tool \Rightarrow freeSW

GUAJE

A Java Environment for Generating Understandable and Accurate Fuzzy Models \Rightarrow freeSW toolbox


 HILKMO Embedding HILK into a Multi-objective evolutionary algorithm

Starting point (II)

HILK (Highly Interpretable Linguistic Knowledge) [IJIS 2008]

- Expert + Induced Knowledge
 - Partition design
 - Rule base learning
 - Knowledge base improvement

José M. Alonso (ECSC)

Expert Knowledge

Advantages

- General knowledge
 - \Rightarrow Experience, education and training, several disciplines
- Global view of the problem
 - Most influential variables
 - Universal rules (involving a few variables)
- High Interpretability

Drawbacks

- Expert knowledge acquisition is a hard task (bottleneck)
- Interaction between variables is difficult to formalize

→ Ξ → → Ξ

Induced Knowledge

Advantages

- Automatic learning (knowledge discovery)
- Finding out interaction between variables
- High Accuracy

Drawbacks

- Specific knowledge
 - Rule generality depends on available data
 - Non-universal rules
- Interpretability depends on the learning technique
- Collecting representative data is expensive (time and money)

Expert + Induced Knowledge

Cooperation (Integration)

- Both kinds of knowledge convey complementary information
- Their combination is likely to yield compact and robust systems

Several options:

- First Expert ⇒ Then Data
- First Data ⇒ Then Expert
- Iterative approach

Intro Interp HILK Experiments Conclusions

HILK KBCT GUAJE HILKN

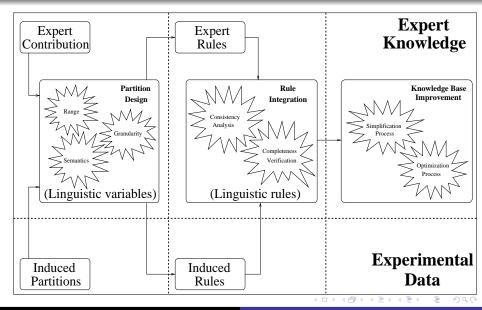
Expert + Induced Knowledge (Fuzzy Logic)

Cooperation (Framework)

Fuzzy Logic (FL) represents both kinds of knowledge under the same formalism

- Linguistic variables and rules (Mamdani)
- Comparison at linguistic level
- Automatic learning methods.

• FL semantic expressivity is close to natural language


 FL favors the interpretability of the final model (but it is not enough to guarantee it)

@ > < = > < =

HILK KBCT GUAJE HILKMO

HILK (expert + data)

June 2010, Bari, Italy

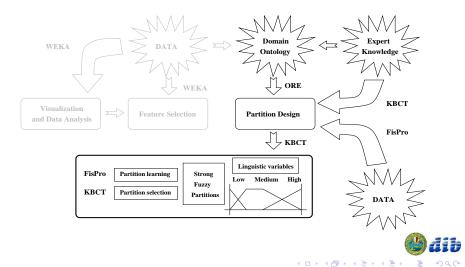
José M. Alonso (ECSC)

Intro Interp HILK Experiments Conclusions

K **KBCT** GUAJE HILKM

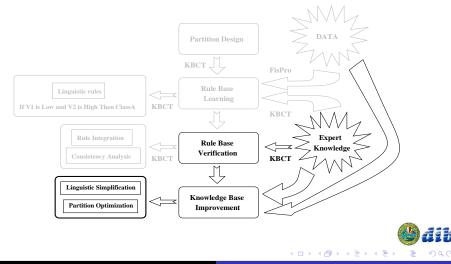
KBCT (Knowledge Base Configuration Tool)

- Open-source (Free-software)
- Portable (Linux / Windows)
- User-friendly (Java Interface)
- Documentation
 - On-line documentation (HTML)
 - User Manual (PDF)
 - Java API
- KBCT
 - \Rightarrow FisPro C++ library
 - \Rightarrow Weka Java library
- Version 3 freely available at http://www.mat.upm.es/projects/advocate/kbct.htm

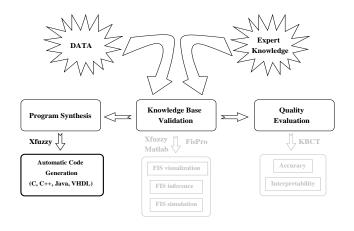


GUAJE (a Java Environment for Generating Understandable and Accurate Fuzzy Models)

- KBCT (Knowledge Base Configuration Tool)
- FisPro (Fuzzy Inference System Professional)
- ORE (Ontology Rule Editor)
- jMetal (Metaheuristic Algorithms in Java)
- Weka (Data Mining)
- Xfuzzy (Fuzzy Modeling)
- Matlab Fuzzy Toolbox



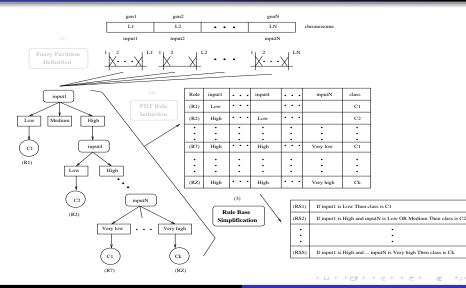
GUAJE Combining several tools (Partition Design)



José M. Alonso (ECSC)

GUAJE Combining several tools (RB verification and KB improvement)

GUAJE Combining several tools (KB validation)


José M. Alonso (ECSC)

 < □ > < ⊡ > < ⊇ > < ⊇ > < ⊇ > Ξ

 Modeling Higly Interpretable Fuzzy Systems

Intro Interp HILK Experiments Conclusions HILK KBCT GUAJE HILKMO

HILKMO: Embedding HILK in a three-objective evolutionary algorithm

José M. Alonso (ECSC)

HILKMO: Three-objective evolutionary algorithm

NSGA-II

- Initial population randomly generated
- Binary tournament selection
- Two point crossover and Thrift mutation
- Pareto ranking with crowding distance measure
- Elitist replacement update procedure

Objective functions

- Maximizing accuracy (classification rate)
- Maximizing interpretability
 - Maximizing readability (rule base complexity)
 - Maximizing comprehensibility (average fired rules)

Intro Interp HILK Experiments Conclusions

K KBCT GUAJE HILKMO

HILKMO: Experimentation (Problem description)

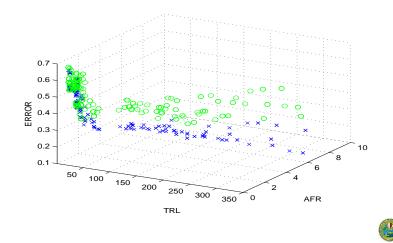
GLASS identification problem

Instances	Attributes	Classes	Class distribution
214	9	6	G1 (32.71%), G2 (35.51%), G3 (7.94%),
			G4 (6.074%), G5 (4.205%), G6 (13.561%)

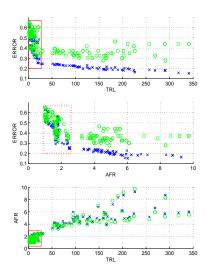
- Attributes: RI, Na, Mg, AI, Si, K, Ca, Ba, Fe
- UCI: http://www.ics.uci.edu/-mlearn/MLSummary.html
- 5-fold cross-validation (5CV): 80% (training) 20% (test)

HILKMO: Experimentation (Parameter configuration)

HILKMO - NSGAII


- Six runs for each training-test pair (6x5CV)
- P_s = 30 indviduals
- 12000 evaluations
- $P_c = 0.6$ (Two-point crossover)
- $P_m = 0.1$ (Thrift mutation)

HILKMO - FRBC


- Partition design: Uniform SFPs for all inputs
- Rule base definition: pruned FDT (tolerance 30%)
- Simplification: TRL <= 50


Intro Interp HILK Experiments Conclusions HILK KBCT GUAJE HILKMO

HILKMO: Aggregated Pareto Front Approximation

HILKMO: Aggregated Pareto Front Approximation (Projection and Zoom)

HILKMO

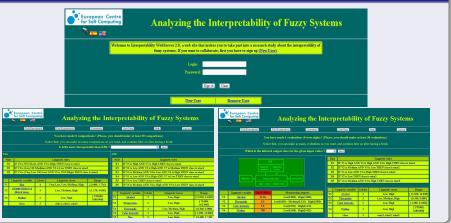
June 2010, Bari, Italy

José M. Alonso (ECSC)

Index

1 Introduction

- Interpretability
- 3 HILK Methodology
- Experimental Analysis
- 5 Conclusions and Future Works


June 2010, Bari, Italy José M. Alonso (ECSC)

Modeling Higly Interpretable Fuzzy Systems

< 🗇 🕨

GUAJEPOLL Analyzing the Interpretability of Fuzzy Systems https://apps.softcomputing.es/guajepoll/

Web poll

José M. Alonso (ECSC)

 < □ > < ⊡ > < ⊇ > < ⊇ > < ⊇ > < Ξ</td>

 Modeling Higly Interpretable Fuzzy Systems

GUAJEPOLL

Analyzing the Interpretability of Fuzzy Systems https://apps.softcomputing.es/guajepoll/

Description of the experiments

- WINE problem: 13 inputs and 1 output (3 classes)
- HILK methodology (IJIS 2008)
 ⇒ six KBs of several sizes (with SFPs)
- Comparing several interpretability indices
- How to know which index is the best one ?
 - \Rightarrow ... asking people !
 - \Rightarrow The survey was addressed to

fuzzy experts (50%) and naive users (50%)

- How much interpretable are the analyzed KBs ?
- What is the best KB interpretability ranking ?
- What are the most relevant aspects when assessing interpretability ?

GUAJEPOLL

Analyzing the Interpretability of Fuzzy Systems https://apps.softcomputing.es/guajepoll/

Some preliminary conclusions (regarding readability)

- People get into difficulties giving numerical indices
- People find much more natural to make approximate reasoning based on the use of linguistic terms (*Highly interpretable*, *Moderately interpretable*, etc.)
- People feel much more confidence setting rankings than giving numerical values
- When two KBs are quite close regarding readability the final ranking choice depends in many subtle details, and as result, at the end there is a clearly subjective choice
- Because of this subjectivity there is a huge diversity of answers
- Objectivity (fair comparison) vs. Subjectivity (personalization)

Index

- 1 Introduction
- Interpretability
- 3 HILK Methodology
- Experimental Analysis
- 5 Conclusions and Future Works

Pubs Concs

Publications Theoretical and experimental analysis

PhD dissertation (October 2007)

- Interpretable fuzzy systems modeling with cooperation between expert and induced knowledge
 - \Rightarrow http://oa.upm.es/588/

Fuzzy system modeling

- A new index easily adaptable to the context of each problem by means of incorporating user's preferences and quality criteria (WCCI 2010)
- Multiobjective fuzzy system modeling
 ⇒ interpretability vs. accuracy (GEFS 2010)
- Characterizing and measuring interpretability (IJAR 2009)
- HILK++: an enhanced version of HILK (SC 2010, ISDA09)

Pubs Concs

Publications Theoretical and experimental analysis

Fuzzy system modeling (Knowledge extraction and representation)

- Ontology (ESTYLF 2008)
- Consistency analysis (IJIS 2008)
- Accuracy improvement ⇒ Optimization (FUZZ-IEEE 2007)
- Interpretability improvement ⇒ Simplificationn (Mathware 2006)
- KBCT (FUZZIEEE 2004)

Publications Theoretical and experimental analysis

Real-world applications

- Human activity recognition fusing intensity of WiFi signal and accelerations (WCCI 2010)
- WiFi localization with robots (ECSC-UAH, EUROCAST 2009)
- An intelligent agent that analyzes data from medical devices for the management of Diabetes Mellitus patients (ECSC-GBT, AIME 2009)
- ADVOCATEII \Rightarrow Avoiding undetectable obstacles by robots (UPM-UAH, JRIS 2007)
- Real-Time System for Monitoring Driver Vigilance (UAH, IEEE Trans on ITS 2006)

Conclusions and Future Works

Conclusions

- Regarding interpretability in terms of readability (transparency) and comprehensibility (understandability)
- Quality-guided design of Highly Interpretable Fuzzy Systems
- Experimental analysis (web poll) https://apps.softcomputing.es/guajepoll/

Feature works (IFS \equiv Interpretable Fuzzy Systems)

- Organizing Panel Session and Special Session (July 21-22) during the IEEE WCCI 2010 (Barcelona, Spain)
- Editing a Journal Special Issue (Information Sciences, ELSEVIER)
- Writing a co-authored book (Authors: J. M. Alonso, C. Castiello, L. Magdalena, and C. Mencar)

European Centre for Soft Computing

THANKS FOR LISTENING !

June 2010, Bari, Italy

José M. Alonso (ECSC)